这是2024年的第43篇文章 ( 本文阅读时间:15分钟 )
01
压测准备
问题出现
看着cpu的监控图,我的脑海里浮现了三个疑问:
1.同等流量下,压测时的cpu利用率为什么高于线上实际值(线上约等于压测80%流量时,cpu利用率实际40%不到,压测时已经到60%了)?
2.流量80%时,为什么压测流量持续不动,cpu利用率会缓慢上涨呢?
3.流量100%时,分明一开始cpu利用率还维持在80%以下,然后突然就飙到100%了?
总体来说,就是CPU高于预期。
问题排查
第一时间我猜测是我的压测改造不符合预期,导致打到db的qps和tps过高导致。
急了,开始看代码,然后挑了几个压测trace在鹰眼上看调用,没找到问题。
然后发现我好蠢呐(主要是有点慌张),dbservice本身就有tps和qps的监控:
看了一下,有两点,一是持续压测的时候,qps并没有持续上涨,二是差不多同流量下qps的值确实略高于线上实际值,但远远没有cpu差值这么多,所以基本可以排除一开始的猜测。
陷入了瓶颈…..
这时候我知道今天的压测指定是不行了,所以很干脆地摆了,开始安心的找问题~
这时候拉了DBA同学一起帮我们看问题,DBA同学表示,一,数据库在长时间高压下会发生性能劣化,这也是cpu从80%突然暴涨到100%的原因(解答了第三个问题),至于CPU利用率异常是表象,qps和tps只是其中一个影响因素,建议我们看看其他指标。
于是挨个查看数据库性能指标(带宽、慢sql、RT….),然后终于发现了一个疑点:
这个缓慢升高的行读,非常符合压测流量80%时cpu曲线的变化,很可能是问题二的原因…
那是不是也有可能是问题一的原因呢?
对比正常峰值流量下的行读指标
好吧,这都差了一个数量级了,基本可以确定问题出在行读异常上了
开始思考为什么行读这么多还在持续上涨,难道是同一个sql查出来的行数会变多?
其实这时候心里已经隐隐约约猜到问题在哪了,但还是顺着这个行读异常排查下去
通过对比定位到了有问题的sql
压测时:
正常时:
点进去也能看到具体的sql信息:
好吧,和我猜的一样,这下悬着的心终于死了。
至于为什么同一条sql压测的平均行读会高这么多,还是得从代码层面来分析。
首先先看下改造逻辑和逻辑推导:
这么压测改造的原因是压测的账号是有限的(同一批压测账号重复的去轮询),如果所有账号都调过一遍接口,那后面的每次查询都能查到任务,不会再有DB写,为了更好的模拟线上实际情况,因此通过这种方法去让账号重新路由到注册逻辑。
然后看下任务的查询逻辑,如下:
private TaskInstanceParam createQueryParamByEffectiveTime(TaskQueryParam queryParam) {
final TaskInstanceParam dbQueryParam = new TaskInstanceParam();
Date now = TimeTravelManager.getCurrentTime(queryParam.getUserId());
dbQueryParam.createCriteria()
.andUserIdEqualTo(queryParam.getUserId())
.andBizTypeEqualTo(queryParam.getBizType())
.andTemplateIdEqualTo(queryParam.getSubBizType())
.andEffectiveStartTimeLessThanOrEqualTo(now)
.andEffectiveEndTimeGreaterThan(now);
dbQueryParam.appendOrderByClause(OrderCondition.EFFECTIVESTARTTIME, SortType.DESC);
dbQueryParam.setPagination(1, 1);
return dbQueryParam;
}
原理刨析
接下来请ChatGpt老师上台,为我们普及下相关原理:
我 :什么是行读,行读高cpu利用率就高嘛?
我 :哦,听起来行读是比较笼统的概念,那什么是逻辑读和物理读呢,区别在哪里?
我:嗯哼,原理解释有点干燥,画个关系图(挑衅)?
我:啊?阿珍你来真的啊?
我:那总结一下,其实就是行读包括逻辑读和物理读两种,前者优于后者,平时的开发中,应该注意合理建立索引和优化sql,来减少扫描整体行读数以及物理读的次数呗,说的对就夸一下我?
反思
1.压测流量80%时,就应该敏感地关注到cpu是高于日常水位的,其实可以避免压测调到100%的cpu飙升;
2.对于DB的性能指标,压测时只关注了最表层的cpu利用率,其他的性能指标监控没有关注到位;
3.对于我们的任务场景下,查询的是有效期内的最新一条任务,实际上不太适合反复注册的压测mock,所以在压测改造时,还需要关注改造方式与场景的匹配程度。
本篇文章来源于微信公众号:阿里技术
本文来自投稿,不代表TakinTalks稳定性技术交流平台立场,如若转载,请联系原作者。